Pattern at bottom
Pattern on top
Categories: Marketing, Predictive,

There are a few things robots are starting to do better than humans:

  • Move items around a stockroom (Amazon has a fleet of robots that have increased operations from 100 items per hour to 300 items per hour for workers)
  • Accomplish missions in dangerous scenarios such as dismantling land minds or bombs
  • File, package, and dispense prescriptions
  • Paralegal and doc-review-focused work (such as searching hundreds of documents for mentions of certain items or concepts)

Their bandwidth, power, and automated processes make sense in these roles, and can out-perform the manual efforts of humans.

We can draw a parallel here to the task of Account-Based Everything. There is no doubt that some things, such as building relationships with target buyers, injecting personality into our messages, and adding a personal touch to client engagements can never fully be replaced by automation.

But a critical component of account-based sales and marketing is identifying which accounts are at a greater propensity to buy.

I’ve discussed before the data and steps that need to be taken to build a target account list, and some organizations choose to execute this process manually using gut feel and basic scoring.

Others rely on predictive analytics.

Using Predictive Analytics to identify your target accounts

In the real world, many factors contribute to a successful sale – much of which is invisible to your teams. Predictive Analytics is, at its core, a way of processing far more information than humans can process. This can be used to build models that better predict the propensity to buy, out-performing manual selection and scoring.

“The majority of ABM programs have a list of targeted accounts in the 500 to 2,000 range, so that’s still a lot of activity to track manually. Predictive is one thing that enables companies to scale their ABM efforts, something which was not possible even a few years ago.” – Megan Heuer, SiriusDecisions

How to use predictive scoring in Account Based Everything

Just as Netflix predicts which movies you’ll like based on the ones you’ve already watched, Predictive Analytics chooses the companies most likely to buy by analyzing the ones who have already bought (or become opportunities).

Predictive Analytics takes data about accounts that have progressed to a certain stage of the buying process, and uses it to highlight other accounts in your market that most look like these.

Models will often include all the firmographic (company information), technographic (what technologies are used at that company), intent (meaningful behavioral data from that account) and engagement data (how engaged your company is with that account) that you might use in a manual scoring model.

What’s different in a predictive analytics model is your ability to include many more dimensions and data points – often in the hundreds or even thousands. In fact, a big part of the value of predictive vendors is they do the data collection and cleansing work for you.

Craig Rosenberg, Chief Analyst at TOPO, explains, “Predictive analytics is one of today’s hottest B2B marketing technologies.

“Fueled by drivers such as big data, SaaS delivery models, and data-driven marketing and sales, predictive analytics garners a tremendous amount of attention, particularly given how few customers are in actual production.

“Even so, early adopters are realizing demonstrable ROI as they use statistical modeling, machine learning, and scoring technologies to identify and prioritize customer data at specific points in the marketing and sales funnel.”

Shifting the conversation from argument to data-driven decisions

In many cases, the most basic approach – working with sales reps and their gut intuition to create a target account list – is enough to see value from Account Based Everything. But it can lead to arguments about who is truly qualified.

Unlike these manual processes to build target account lists, predictive models don’t go in with any biases or hypotheses. They simply analyze the data, building the model around any characteristics that best correlate with eventual success.

“Predictive Analytics adds a crucial layer of objective, pure data-driven insights and intelligence to inform your marketing and sales decision-making process. There’s plenty of debate out there about the limits of artificial intelligence and machine-learning. But there’s no doubt that Predictive Analytics can process data, identify patterns and surface insights that human beings simply can’t do at scale.” – Travis Kaufman, VP of Product, Leadspace.

No matter if your process is manual or predictive, your target account selection will be the most important component of your account-based strategy. Be mindful, and get it right.


Modern Marketer's Guide to ABM


Picture by KamiPhuc on Flickr | CC BY 2.0 | no changes

B2B segmentation
Jim Hopkins
Jim Hopkins

Senior Director of Product Marketing

How to Build Customized B2B Marketing Segments

It's all about attracting, connecting with, and then converting your ...

b2b demand generation
Jim Hopkins
Jim Hopkins

Senior Director of Product Marketing

B2B Segmentation vs. B2C Segmentation: A Look at the Differences

What's the difference between marketing for a B2B company and ...

b2b demand generation

Schedule a personalized demo today


One of our team will be in touch with you shortly.
We look forward to speaking with you!

Send us a file and we’ll show you all the magical things our CDP can do


One of our team will be in touch with you shortly.
We look forward to speaking with you!

We’d love to hear from you! Fill in the form below and we’ll get back to you as soon as possible - usually within one working day


One of our team will be in touch with you shortly.
We look forward to speaking with you!

Do Not Sell My Personal Information